Thursday, February 18, 2010

Klotz and Stein 2008

Klotz MG, Stein LY. 2008. Nitrifier genomics and evolution of the nitrogen cycle. FEMS Microbiology Letters 278: 146-156.

These authors review the role of nitrifying microorganisms in the current nitrogen cycle, and their evolution and the emergence of biological nitrogen cycles in early Earth history. The current global nitrogen cycle has changed considerably in the past decades, due to the large increase in nitrogen in the cycle due to human activities. The early-Earth nitrogen cycle was probably mostly driven by abiotic processes. After the development of an oxygen-rich atmosphere, nitrogen cycling was almost entirely biotic, with most key processes driven largely or entirely by bacteria and archaea. In the last few decades, the anthropogenic abiotic processes of fertilizer production and fossil-fuel combustion combined with increased cultivation of N2-fixing crops, has transformed the global nitrogen cycle.

As presented in this paper, there are two lobes to the global nitrogen cycle. N2 gas in the atmosphere is fixed to NH3, by nitrogenase in bacteria and archaea, by the Haber-Bosch industrial process, and (in small quantities) by hydrothermal vents. The process of nitrification converts this ammonia to nitrite/nitrate. Nitrite/nitrate are returned to the atmosphere as N2 through denitrification, with production of N2O under weakly anaerobic conditions. The other lobe of the cycle is a “short circuit” that avoids the atmospheric N2 pool and cycles nitrite/nitrate back to ammonia through the processes of ammonification and through production and decomposition of organic matter containing nitrogen. There is another, minor short circuit, as “anammox”, anaerobic ammonia oxidation, returns ammonia to N2 directly.

This “mini review” focuses on the nitrification portion of the cycle. The first step, oxidation of ammonia to hydroxylamine (NH2OH) is carried out by ammonia oxidizing bacteria, abbreviated AOB. There are many acronyms in this paper, reflecting the many acronyms in the existing literature regarding global biogeochemical cycles. NOB are nitrite oxidizing bacteria, and they take the oxidized products of AOB, especially nitrite through to nitrate. Anammox bacteria, on the other hand, may run the same net process of NH3 to NO3- directly, without collaboration with other cells.

The discussion of the plausible evolutionary scenarios in this paper is interesting but not particularly relevant to my current research. This discussion focuses on the relative timing of major events, such as the emergence of nitrification, complete and incomplete denitrification, an oxygenated atmosphere, and nitrogen fixation. These factors interact with each other, creating conditions favourable or not to the evolution of each other and of possible detail shifts within.

The description of the role of hydroxylamine produced by early nitrifiers in stimulating evolution of metabolic pathways responsible for its detoxification initially reads as speculation, but a long and detailed description of the ways in which the various components of those metabolic detox enzymes and pathways function provides plenty of support for the arguments. One aspect of this discussion is that some enzymes are currently misclassified, and that very similar enzymes in different organisms have different names reflecting different ultimate functions rather than the usual (and preferred) enzyme naming scheme that reflects proximate function.

In the discussion concerned with anthropogenic climate change and nitrogen dynamics, especially in soils and ocean waters, interactions with methane are briefly considered. This is based on the observation that methanotrophs are often also ammonia-oxidizers, operating under a budget of consumption of both molecules that shifts as ammonia from fertilizer is added to the system.
Of greatest relevance to my current work is the section describing the gene ncyA. This encodes an enzyme (nitrosocyanin) involved in the pathway from ammonia to nitrite, and has only been found in AOB to date, as opposed to NOB, anammox, or heterotrophs; it seems to be involved in the chemistry of obligate chemolithotrophy as expressed by AOB. It seems likely the enzyme binds and reduces NO, a highly toxic intermediate in ammonia oxidation. The regulatory region adjacent to the gene is also suggestive of roles in this metabolic pathway, and regulation is linked to concentration of various nitrogen-with-oxygen compounds.

This review is very useful to my current research. This paper and the major references in it will be key to constructing a diagram of the complex nitrogen transformations occurring in soils, which will allow targeted hypothesis generation and testing regarding the communities and processes in the soils I am studying.

No comments: