Wednesday, February 24, 2010

Philippot et al. 2002

Philippot L, Piutti S, Martin-Laurent F, Hallet S, Germon JC. 2002. Molecular analysis of the nitrate-reducing community from unplanted and maize-planted soils. Applied and Environmental Microbiology 68: 6121-6128.

These authors applied molecular techniques including PCR, RFLP, and sequencing to the study of soil bacteria relevant to crops. Dissimilatory nitrate reduction, the process that converts NO3- to NO2-, is widespread in prokaryotes, with the activity described in alpha, beta, and gamma Proteobacteria, gram-positive bacteria, and some archaea. There are two described enzymes that catalyze the reaction and provide energy to the organism; these authors focused on the membrane-bound protein, specifically one subunit that includes a distinctive set of components. Their approach was to design primers for a well-conserved region of the gene narG that amplify a 650bp region, and then subject the PCR product to cloning, RFLP analysis, and sequencing.

Community structure and diversity was compared between pots planted with maize versus unplanted controls. Maize (Zea mays) is a plant that facilitates gas diffusion in its roots under oxygen-stress soil conditions; this creates an aerobic region in the rhizosphere distinct from anaerobic conditions further from roots. While diversity, as measured by standard indices, did not differ between planted and unplanted soils, the structure of the communities did change, with numerous RFLP phylotypes found in only one or the other treatment. This suggests a role of rhizosphere conditions, likely involving both oxygen and root exudates, in selecting for particular groups of microorganisms.

Nitrate reduction occurs primarily or possibly only under aerobic conditions. The microbial cell gains energy from dissimilatory reduction of nitrate, and if it occurs in the rhizosphere, the plant may gain a readily-accessible form of nitrogen in the form of nitrite. Denitrification, the process that shuttles nitrogen atoms from nitrite to gaseous forms such as N2O or N2, can occur under a range of oxygen conditions, including aerobic, thus denitrifiers in the rhizosphere may compete with plant roots for nitrite. The fate of nitrite produced by dissimilatory nitrate reduction can also be to ammonium, though this appears to be rare in soil and more common in vertebrate guts and digested sludge, two environments typically lacking in oxygen.

This paper provides some molecular tools for my own studies of nitrogen dynamics in soils, especially the sequences of the degenerate primers. In addition, it provides some clarification of parts of the remarkably complex soil-nitrogen cycle.

No comments: