Wednesday, February 24, 2010

Siciliano et al. 2007

Siciliano SD, Ma W, Powell S. 2007. Evaluation of quantitative polymerase chain reaction to assess nosZ gene prevalence in mixed microbial communities. Canadian Journal of Microbiology 53: 636-642.

These authors examined the usefulness of qPCR in studying populations of soil bacteria, especially denitrifiers using the gene nosZ that codes for nitrous oxide reductase. This enzyme catalyzes the final reaction in the process of denitrification, converting N2O to N2. Normally, it is expressed only in severely anaerobic conditions, as it allows the use of N2O as the terminal electron acceptor during metabolism.

There are a number of factors that control the efficiency of PCR in quantitative PCR applications. The efficiency is a major component of the calculations that allow qPCR to estimate gene copy numbers in samples and thus to be used to examine population dynamics of non-culturable microorganisms from environmental samples. Of particular importance is consistency of efficiency between the amplification of the standard DNA template and the amplification of all templates in the unknown samples. Variation between the standard and the unknowns can lead to severe under- or over-estimation of target populations, while variation in efficiency between different templates within the unknown samples can lead to misestimations of relative proportions of organisms.

These authors evaluated the efficiency of qPCR in a range of experimental templates, and in a range of combinations simulating mixed populations. Little variance in efficiency was found, and this variance was not associated with genetic distance from a reference organism. The experimental design did not allow a direct examination of the influence of the geographical differences in the sources of the test sequences (Arctic, temperate-grassland, Antarctic), but this lack of association with the reference organism does indicate low or no variation among PCR efficiencies associated with some other variable.

The influence of varying PCR efficiencies among templates within a sample becomes less severe as the number of different templates rises. In a typical soil sample with perhaps 1000 different templates, no one template can utterly dominate amplification by outcompeting for primers, thus the resulting mix of amplicons at the end of 40 rounds of PCR will most likely be representative of the population mixture in the environment.

This paper is of obvious high utility to my own work, not least because the individual machine used to perform qPCR is the same individual machine that I will be using. For this and other reasons, this paper was suggested to me, repeatedly. Future reference to this paper, when I am developing my methods and when I am writing up the next paper or two, seems likely.

No comments: